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The Log-Poisson phenomenological description of the turbulent energy cascade is evoked to discuss high-
order statistics of velocity derivatives and the mapping between their probability distribution functions at
different Reynolds numbers. The striking confirmation of theoretical predictions suggests that numerical solu-
tions of the flow obtained at low/moderate Reynolds numbers can play an important quantitative role in the
analysis of experimental high Reynolds number phenomena, where small scales fluctuations are in general
inaccessible from direct numerical simulations.
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I. INTRODUCTION

Since the pioneering experimental work of Batchelor and
Townsend, published exactly 60 years ago �1�, it is known
that scale-dependent Galilean invariant observables, such as
velocity differences, fluctuate in a strongly non-Gaussian
way at small scales in turbulent flows. This kind of statistical
behavior, generally referred to as “intermittency,” indicates
that the K41 picture of turbulence �2,3�, which actually
would correspond to the existence of a uniformly distributed
energy dissipation field �4�, should break down: a fact noto-
riously anticipated by Landau as early as in 1942 �5�. Not
less remarkably, long before additional breakthrough experi-
ments were performed �6�, phenomenological models of the
energy cascade advanced the conjecture that intermittency
should be related to the stochastic multiplicative nature of
the energy cascade process �7,8�, implying that small scale
strong fluctuations are, in some sense, fed by the weaker
large scale ones.

The intermittency phenomenon is commonly associated
with the anomalous scaling of velocity structure functions
and those are relatively well described by schemes based on
the multiplicative cascade idea �9�. Still, a comprehensive
description dealing with both anomalous scaling and the
non-Gaussian behavior of intermittent observables is a major
challenge of three-dimensional turbulence theory �10�. Small
scale strong fluctuations are believed to reflect the dynamics
of coherent structures such as vortex filaments. Even though
this is a markedly open problem, a similar physical picture is
in fact well established in simpler contexts, as in Burgers
turbulence �11�, with shocks playing the role of “vortices.”

The log-Poisson model �12,13� yields perhaps the most
intriguing description of the turbulent multiplicative cascade,
since—as it is well known—it leads to the accurate She-
Leveque intermittency exponents of velocity structure func-
tions �14�. The phenomenological work of She and Leveque
is also of great physical appeal, once it places vortex fila-
ments as a fundamental ingredient in the production of
intermittency.

We are interested, in this work, to know what the log-
Poisson model may tell us about the profiles of velocity-
gradient pdfs. We deal here with two sets of probability dis-
tribution functions �pdfs� for flows associated to different

Reynolds numbers. One of them is obtained from an atmo-
spheric surface layer experiment �15–17� and the other from
a direct numerical simulation �DNS� of homogeneous and
isotropic turbulence �18�. The underlying motivation in this
choice of systems is to show that numerical low/moderate
Reynolds number results can be useful in the modeling of
flows that cannot be directly simulated �even in a foreseeable
future�. Exactly, the same claim was put forward in a previ-
ous letter �19�, where, despite the force of evidence, lacked
some phenomenological basis, which—then—we develop
here. We find that a bridge between low and high Reynolds
number pdfs can be built within the framework of the log-
Poisson model �20�.

This paper is organized as follows. In Sec. II, we briefly
review the multiplicative cascade models, introduce the log-
Poisson model, and compute hyperflatness factors of
velocity-gradient fluctuations, comparing them to recent es-
timates. Two relevant theorems related to velocity-gradient
pdfs are also established. In Sec. III, we present the experi-
mental and numerical data that were analyzed. In Sec. IV, the
experimental and the numerical velocity gradients are closely
matched with the help of a Monte Carlo procedure based on
the theorems of Sec. II. In Sec. V, we summarize our results
and point out directions of further research.

II. VELOCITY-GRADIENT STATISTICS

A. Multiplicative cascade models

In the multiplicative cascade models �4�, one assumes that
energy flows from the integral scale L to the dissipative scale
� through a number of “quantum” steps associated to eddies
of sizes L ,L /a ,L /a2 , . . ., where a�1 is an arbitrary rescal-
ing factor. At length scale �m�L /am, the fluctuating energy-
transfer rate is defined as

�m = �0W1W2 . . . Wm, �2.1�

where the W’s are positive-independent random variables,
with unit expectation value �W�=1, so that the mean energy-
transfer rate is conserved along the cascade process, i.e.,
��m�=�0. The scaling behavior of velocity structure functions
Sq�r�����v�q� is then derived with the help of Kolmogorov’s
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refined similarity hypothesis, which postulates that fluctua-
tions of �v at scale �m have the same moments �up to con-
stant numerical factors� as ��m�m�1/3.

Analogous phenomenological arguments can be put for-
ward to deal with the case of velocity derivatives—
generically denoted in the following by �v. The essential
idea is to assume that spatial fluctuations of the velocity field
are smooth at the dissipative scale and, therefore,

�v �
�v�

�
� ����1/3�−2/3, �2.2�

where, above, �v� is the velocity increment defined at length
scale �. One may write based on purely dimensional
grounds, ����3 /���1/4. Thus, substituting the latter on Eq.
�2.2�, we get

�v � 	��/� , �2.3�

a statistical correspondence not unknown to the previous lit-
erature �21�. A more interesting formulation of the refined
similarity hypothesis is given in terms of probability distri-
butions. As it is clear, velocity-gradient pdfs can be always
written as

���v� = 

0

�

d��1����2��v��� , �2.4�

where �2��v ��� is the velocity-gradient pdf conditioned on
the energy-transfer rate ��=� and �1��� is the pdf associated
to events, which have ��=�. The refined similarity hypoth-
esis is then the statement that at large Reynolds numbers,

�2��v��� = 	�/�F�	�/� � v� , �2.5�

where F� · � is a universal �Reynolds number independent�
function of its argument. In fact, taking Eqs. �2.4� and �2.5�,
it is not difficult to show, in agreement with Eq. �2.3�, that

���v�q� = Cq����/��q/2� , �2.6�

where

Cq = 

−�

�

dxxqF�x� . �2.7�

It is worth noting that the form of the universal functions
F�x� for the case of velocity differences has been the subject
of experimental research �22,23�. As a first approximation,
F�x� turns to have a Gaussian profile, but one expects asym-
metric corrections to be relevant in the problem of longitu-
dinal structure functions, due to their nonvanishing skew-ness.

B. Log-Poisson model

In the log-Poisson model �12,13�, one writes down the
energy-transfer rate factors as

W = a�−m, �2.8�

where a=3 /2, �=2 /3, and m	0 is a Poisson random vari-
able, with expectation value

c =
a�

a − 1
ln a = 2 ln�3

2

 . �2.9�

In order to cope with velocity-gradient fluctuations, it is
necessary to set up in the first place the total number N of
cascade steps associated to the turbulent flow under scrutiny.
In other words, we would like to find N, such that �=L /aN.
We stress that the multiplicative cascade description ad-
dressed here is far from being a rigorous framework since we
take the Kolmogorov scale ����

−1/4 to be a fluctuacting
quantity. Thus, N should be defined, necessarily, from some
averaging procedure. We adopt a simple prescription based
on the definition of the Reynolds number as �4�

Re =
L4/3�0

1/3

�
= ���L

�

4��1/3

� a�4/3�N. �2.10�

Therefore, we find

N =
3

4
loga Re. �2.11�

An alternative and useful expression for N can be given in
terms of the Taylor-based Reynolds number R
, which fol-
lows by taking the homogeneous isotropic result R
=	15Re
�4�,

N =
6

4
loga R
 −

3

4
loga 15. �2.12�

C. Hyperflatness factors

As a direct application of the log-Poisson model, we com-
pute the Reynolds-dependent velocity-gradient hyperflatness
factors defined as

Hq�R
� �
���v�q�

���v�2�q/2 . �2.13�

A straightforward manipulation of Eq. �2.13�, taking into
account Eqs. �2.1�, �2.6�, and �2.8�, gives

Hq�R
� =
Cq

C2
q/2�� ��

�0

q/2� =

Cq

C2
q/2 �Wq/2�N = AqR


�q,

�2.14�

where

Aq =
Cq

C2
q/215−�q/2, �2.15�

with

�q =
3

2
loga�Wq/2� =

3

4
q� −

3

2

a�

a − 1
�1 − a−q/2� . �2.16�

In particular, the skewness and flatness coefficients predicted
by Eq. �2.16� are �3�0.13 and �4=1 /3, respectively. A
good agreement is found from the recent account of Ishihara
et al. �24�, which yields �3=0.11�0.01 and �4
=0.34�0.03.

If RA and RB are Taylor-based Reynolds numbers, respec-
tively, associated to flows with NA and NB cascade steps, then
Eq. �2.14� implies that
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Hq�RA�
Hq�RB�

= �Wq/2�NA−NB, �2.17�

and, thus, taking into account Eq. �2.16�,

NA − NB =
3

2�q
loga

Hq�RA�
Hq�RB�

, �2.18�

a quantity that measures the “distance” between cascades,
going to play an important role in Sec. IV.

D. Velocity-gradient PDFs

We are interested to explore further consequences of the
log-Poisson cascade picture in the setting of velocity-
gradient pdfs. In order to render the exposition more system-
atic, we introduce two important results in the form of theo-
rems.

Theorem 1. Let 
2����v�2�. The standardized pdf �̃��v�
�
��
�v� has a universal profile at fixed R
.

Proof. We obtain, from Eqs. �2.4� and �2.5�,

�̃��v� = 
��
 � v�

= 


0

�

d��1���	�/�F�
	�/� � v�

= �
2

0

�

d��1��
2��	1/�F�	1/� � v� . �2.19�

Our task, thus, is to show that �
2�1��
2�� is indeed univer-
sal. Since the sum of Poisson random variables is also a
Poisson random variable, Eqs. �2.1� and �2.8� lead, for a
cascade with N steps, to

�� = �0aN�−m, �2.20�

where m is a Poisson random variable with expectation value
Nc. We may write, thus,

�1��� = �
m=0

�
�Nc�me−Nc

m!
��� − �0aN�−m� . �2.21�

Now, according to Eq. �2.6� we write the variance of �v as

2=�0C2 /� and, therefore, find

�
2�1��
2�� = C2�
m=0

�
�Nc�me−Nc

m!
��C2� − aN�−m� ,

�2.22�

which, in fact, ultimately depends only on R
. �
Theorem 2. Let A and B denote flows with Taylor-based

Reynolds numbers RA and RB associated to log-Poisson cas-
cades with NA and NB steps and velocity-gradient pdfs

�A��v� = 

0

�

d��1
A���	�/�F�	�/� � v� ,

�B��v� = 

0

�

d��1
B���	�/�F�	�/� � v� . �2.23�

It follows that

�̃A��v� = 

0

� dx

x
K�x��̃B� �v

x

 , �2.24�

where K�x� is the pdf of the random variable

x = a1/2�NA−NB��−m/2, �2.25�

which, on its turn, is defined in terms of m, a random Poisson
variable with expectation value �NA−NB�c.

Proof. A proof follows by direct substitution of the ex-
plicit form of K�x� in Eq. �2.24�. Defining g=aN�/2, with N
=NA−NB, we may write

K�x� = �
m=0

�
�Nc�me−Nc

m!
��x − ga−m/2� . �2.26�

Using Eqs. �2.22� and �2.26�, we obtain, for the right-hand
side of Eq. �2.24�,



0

� dx

x
K�x��̃B� �v

x

 = 


0

� dx

x �
m=0

�
�Nc�me−Nc

m!
��x − ga−m/2�

�

0

�

d��
B
2�1

B��
B
2��

�	1/�F�	1/� � v/x�

= C2

0

� dx

x



0

�

d��
m=0

�

�
m�=0

�

�
�Nc�me−Nc

m!

�NBc�m�e−NBc

m�!

���x − ga−m/2���C2� − aNB�−m�

�	1/�F�	1/� � v/x� . �2.27�

Performing the substitution �→� /x2 in Eq. �2.27� and sub-
sequently integrating over x, we get

C2

0

�

d��
m=0

�

�
m�=0

�
�Nc�m�NBc�m�e−NAc

m ! m�!

���C2� − g2aNB�−m−m��	1/�F�	1/� � v� . �2.28�

Define, now, p=m+m�, so that Eq. �2.28� becomes

C2

0

�

d��
p=0

�

�
m=0

p
�Nc�m�NBc�m−pe−NAc

m ! �m − p�!

���C2� − g2aNB�−p�	1/�F�	1/� � v�

= C2

0

�

d��
p=0

�
�NAc�p

p!
e−NAc

���C2� − aNA�−p�	1/�F�	1/� � v�

= �̃A��v� . �2.29�

�
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In view of theorem 2, we can devise a straightforward
Monte Carlo integration procedure in order to relate
velocity-gradient pdfs defined at different Reynolds num-
bers. In fact, if x�0 and y are random variables of two
independent stochastic process, described, respectively, by
pdfs K�x� and �̃�y�, then the random variable z=xy is given
by the pdf

���z − xy��x,y =
 dxdyK�x��̃�y���z − xy�

= 

0

� dx

x
K�x��̃� z

x



= �̃�z� , �2.30�

where we have used Eq. �2.24� in the last equality above. We
have found that it is greatly advantageous to use Monte
Carlo integration, instead of more traditional numerical
methods, a fact probably due to the poor convergence prop-
erties of the latter in our particular problem.

III. ATMOSPHERIC SURFACE LAYER EXPERIMENT

Atmospheric surface layer velocity fluctuations were stud-
ied over a grass- covered flat surface in the Sils-Maria valley,
Switzerland �15�, a place which hosts reasonably stable
winds. The results reported in this work correspond to mea-
surements of all of the nine components of the velocity-
gradient tensor performed in a tower 3.0 m high. The veloc-
ity signal was recorded at a sampling rate of 10 KHz �which
was high enough to resolve the dissipative scales�, with the
help of a 20 hot-wire probe anemometer, specifically de-
signed for the particularities of the field experiment.

Velocity gradients were computed without resort to the
Taylor’s frozen turbulence hypothesis. The Taylor-based
Reynolds number of the flow estimated from the Taylor
length 
=	u1

2 / ���1u1�2� is R
=3.4�103 �u1 is the projection
of the velocity fluctuations along the flow direction�. We note
that since the flow is somewhat anisotropic, the definition of
a meaningful Taylor-based Reynolds number may be prob-
lematic. We will get back to this point in Sec. IV.

The experimental velocity-gradient pdfs are shown Fig. 1.
We find a good �to within error bars� collapse of standardized
pdfs of velocity gradients sij =� jui with i� j. Due to aniso-
tropy effects in the surface layer, however, there is no col-
lapse for the standardized pdfs of diagonal components sii,
and we have discarded the curves for s22 and s33 assuming, as
a working hypothesis to be tested a posteriori, that isotropic
results would correspond to the set �s11,sij�, with i� j.

The central aim of this work is to model the pdfs depicted
in Fig. 1 using DNS results for homogeneous and isotropic
turbulence obtained at the considerably lower Taylor-based
Reynolds number R
=240 �the numerical data correspond to
simulations discussed in Ref. �18��. The corresponding DNS
velocity-gradient pdfs are shown in Fig. 2. As it follows from
this figure, the pdfs collapse into two distinct groups associ-
ated to the diagonal and nondiagonal components of the
velocity-gradient tensor sij. Of course, we do not expect that
the pdfs given in Fig. 2 yield a direct fitting to the ones of

Fig. 1—there is a clear discrepancy as shown in Figs. 3 and
4.

IV. MONTE CARLO PDF RECONSTRUCTION

Our computational strategy is to consider the experimen-
tal �R
=3.4�103� and the numerical �R
=240� flows dis-
cussed in Sec. III as the systems A and B, respectively, of
theorem 2. An important parameter here is the cascade dis-
tance NA−NB of these flows. This quantity can be computed
by measuring the flatness factors H4 of flows A and B and
using them as input parameters in Eq. �2.18�. From the pdfs
of s11, we get

H4�A� = 11.5,

FIG. 1. �Color online� Experimental velocity-gradient pdfs for
atmospheric surface layer flow with R
=3.4�103. Black �darker�
line: s11; colored �lighter� lines: sij, with i� j.

FIG. 2. �Color online� Numerical velocity-gradient pdfs for ho-
mogeneous isotropic turbulence with R
=240. Black lines: diagonal
components sii; green �light gray� lines: nondiagonal components
sij.

KHOLMYANSKY et al. PHYSICAL REVIEW E 80, 036311 �2009�

036311-4



H4�B� = 6.6. �4.1�

Therefore, using Eq. �2.18�, with �4=1 /3, we find

NA − NB =
9

2
log3/2�11.5

6.6

 = 6.16. �4.2�

Due to the discrete structure of the cascade in the multipli-
cative models, we take NA−NB=6 in the following consider-
ations.

Using a random Poisson variable generator as the one
given in Ref. �25�, it is straightforward to establish a stochas-
tic process with random variable given by Eq. �2.25�. On the
other hand, in order to generate a stochastic process with
random variable described by the numerical pdf of s11, we
proceed in two steps. First, we define an accurate polynomial
fitting to the log10 �̃B�s11� profile; second, the polynomial
analytical distribution just obtained is used in a Monte Carlo
accept-reject algorithm �26�, which produces random vari-

ables distributed according to �̃B�s11�. Analogous computa-
tions are performed for the numerical pdfs of s23, which are
taken as a representative of the nondiagonal components of
the velocity-gradient tensor. By multiplying the stochastic
processes associated to the Poisson and the numerical pdfs,
we get standardized pdfs, which would hopefully fit the ex-
perimental curves. We have taken a process with 2�107

elements. In fact, an excellent agreement is attained from the
Monte Carlo reconstructed pdfs, as shown in Figs. 5 and 6. A
comparison between the modeled and the experimental pdfs
is also shown in Figs. 7 and 8 in linear scales to be con-
trasted to Figs. 3 and 4.

It is important to emphasize that the remarkable fittings
shown in Figs. 5–8, between the numerical and experimental
pdfs for the set �s11,sij�, are obtained from the mapping de-
termined by the single parameter NA−NB provided by the
fluctuations given by Eq. �2.25�. This constitutes a strong

FIG. 3. Comparison between the numerical �R
=240; solid line�
and the experimental �R
=3.4�103; dots� pdfs of s11.

FIG. 4. Comparison between the numerical �R
=240; solid line�
and the experimental �R
=3.4�103; dots� pdfs of s23.

FIG. 5. �Color online� The numerically reconstructed pdf of s11

�black solid line� is compared to the experimental pdf �red circles�.

FIG. 6. �Color online� The numerically reconstructed pdf of s23

�black solid line� is compared to the experimental pdfs of sij, with
i� j �colored symbols�.
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evidence for the existence of an underlying log-Poisson cas-
cade process. We note, furthermore, that the agreement be-
tween modeled and experimental pdfs would be not so good
if the experimental pdfs of s22 or s33 were chosen in place of
the one for s11. The present method, thus, has the heuristic
potential to address issues of isotropy in boundary layer
flows.

A further application of our results is the definition of an

effective Reynolds number R̄
 for the atmospheric surface
turbulent flow, taking the more controlled Reynolds number
of the DNS as a standard. We write, according to Eq. �2.14�,

R̄
 = 240 � �11.5

6.6

3

� 1.2 � 103. �4.3�

It was noted, in Ref. �15�, that the rough estimate R
=3.4
�103 displaces the point �R
 ,H4�= �3.4�103 ,11.5� out of
the empirical curve well modeled H4�R


�4. However, we

find that if the alternative value �4.3� is used instead of R


=3.4�103, then the point �R
 ,H4� gets closer to the usual
curve of flatness.

V. CONCLUSIONS

We have used the log-Poisson model of the turbulent cas-
cade to get the pdfs of velocity-gradient fluctuations of a
high Reynolds turbulent atmospheric flow. The excellent fit-
tings are achieved by means of a Monte Carlo integration
procedure and the use of standard pdfs obtained in a lower
Reynolds number DNS. Our results indicate that non-
Gaussianity and anomalous scaling of scale-dependent ob-
servables can be seen as different manifestations of intermit-
tency that can be approached within a unified framework.
Actually, this point of view has been formerly pursued along
the multifractal description of intermittency �27�, with mod-
est success in the quality of pdf fittings, nevertheless, the fact
that they are dependent on a large number of free parameters.

As a natural application of our methodology, we have
found a way to �i� select isotropy sectors of the velocity-
gradient tensor in boundary layer flows and �ii� unambigu-
ously define effective Taylor-based Reynolds numbers in the
presence of anisotropy. These results can be of considerable
interest in the study of anisotropy effects in turbulent bound-
ary layers. It is also likely that the same ideas can be ex-
tended to the case of free shear turbulence.

An interesting question is how low can be the DNS Rey-
nolds number, while still leading to good velocity-gradient
pdf fittings for higher Reynolds number flows, along the
lines discussed in Sec. IV. An investigation of this matter
could throw some light on the problem of extended self-
similarity �28�. Also, we wonder if correlation effects in the
velocity-gradient time series could be modeled in similar
ways. A promising direction here would be to link the
Fokker-Planck approach to turbulent time series �29� with
the log-Poisson cascade model.

It is clear that the multiplicative cascade picture is worth
as a phenomenological construction if a consistent meaning
can be given to concepts such as the inertial range, local
cascade, and the universality of velocity structure exponents.
However, recent work �30� on the scaling behavior of veloc-
ity structure functions suggests that inertial and dissipative
range fluctuations could be coupled in a bidirectional way. It
has been found in �30� that the scaling exponents measured
in the inertial range are changed if strong dissipative events
are discarded in the averaging procedure, indicating a “flow
of influence” from the small to the large scales.

In order to address further related studies, we note that a
possible solution to these puzzling observations, saving the
essence of the multiplicative cascade phenomenology, would
rely on the usual definition of the energy dissipation rate �m
as the local dissipation rate averaged over volumes with lin-
ear sizes on the order of �m=L /am. Since the energy dissipa-
tion rate is long range correlated, it is likely that events,
which have strong local dissipation rates, turn to be corre-
lated with strong events in the above �inertial range aver-
aged� sense.

FIG. 7. The numerically reconstructed pdf of s11 �solid line� is
compared to the experimental pdf �dots� in linear scales.

FIG. 8. The numerically reconstructed pdf of s23 is compared to
the experimental pdf �dots� in linear scales.
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